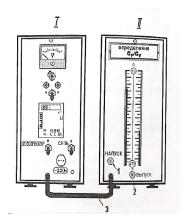
Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кузбасский государственный технический университет имени Т. Ф. Горбачёва»

Кафедра физики

Отчёт

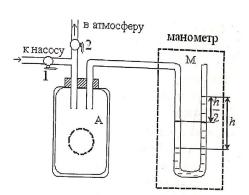
По лабораторной работе № 3

«ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА МЕТОДОМ КЛЕМАНА-ДЕЗОРМА»


Выполнила ст. группы ИТб-222: Галкина Виктория Николаевна Преподаватель: Крумликова Надежда Ивановна

	дата	подпись
допуск		
отчёт		

1. Цель работы:


- а) Экспериментально проверить основные термодинамические законы для идеального газа;
- б) Определить коэффициент Пуассона для воздуха и сравнить его с расчётным значением.

2. Схема установки

Рис. 1. Экспериментальная установка для определения отношения C_p/C_V

I – первый модуль с компрессором; II – второй модуль с баллоном; 1 – клапан «напуск»; 2 – клапан «выпуск»; 3 – трубка.

Рис. 2. Схема экспериментальной установки для определения C_p/C_V

А – сосуд; М – манометр; 1 и 2 – клапаны; h – уровень жидкости в манометре

3. Основные расчётные формулы:

Дополнительное давление в баллоне в коленах манометра определяется по формуле: $\Delta p = p_{\infty} gh$, где h — разность уровней жидкости в коленах манометра; p_{∞} — плотность жидкости ($p_{\infty} = 10^3 \text{ кг/м}^3$)

Температурное равновесие характеризуется параметрами p_1 и T_0 , причем:

$$p_1 = p_0 + p_{\mathcal{H}} g h_1$$

где P_0 — атмосферное давление; h_1 — установившаяся разность уровней жидкости в манометре; $p_{\mathscr{R}}gh_1$ — гидростатическое давление столба жидкости в манометре высотой h_1 , которое уравновешивает добавочное давление в баллоне A; T_0 — комнатная температура.

Когда температура станет равной T_0 , изменение уровней в манометре прекратится, и третье состояние газа будет характеризоваться параметрами:

$$p_2 = p_0 + p_{yc} g h_2$$

где h_2 — новая установившаяся разность уровней в манометре.

Коэффициент Пуассона: $\gamma = \frac{h_1}{h_1 - h_2}$

Отклонение результатов измерения от расчётного значения γ_{meop} вычисляется по формуле:

$$\varepsilon = \frac{\left| \gamma_{meop} - \gamma_{\Re \kappa} \right|}{\gamma_{meop}},$$

где $\gamma_{meop} = \frac{i+2}{i}$, принимая воздух за двухатомный газ с числом степеней свободы i = 5:

Относительная погрешность коэффициента Пуассона: $\varepsilon_{\gamma} = \sqrt{2 \, \varepsilon_{h_1}^2 + \varepsilon_{h_2}^2}$

Граница доверительного интервала: $\Delta \gamma = \frac{\langle \gamma_{\text{экс}} \rangle \varepsilon_{\gamma}}{100\,\%}$

Изменение энтропии при изохорном нагревании:

$$\Delta S_V \approx \frac{i}{2} \frac{\left(p_0 + p_{sx} g h_2\right) \cdot V}{T_0} \cdot \frac{pg h_2}{p_0}.$$

Результаты измерений уровней жидкости и вычислений показателя адиабаты γ

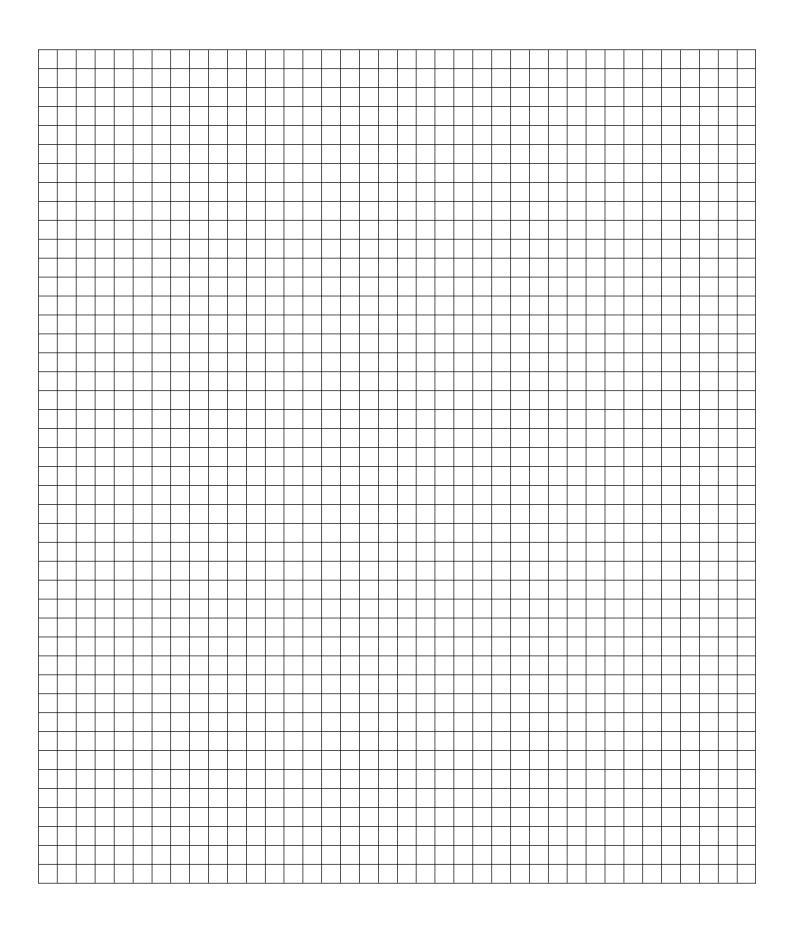
No	h_1	h_2	ү _{экс}	$\langle \gamma_{ enskgr} angle$	γ _{meop}	3
п/п	MM	MM				%
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

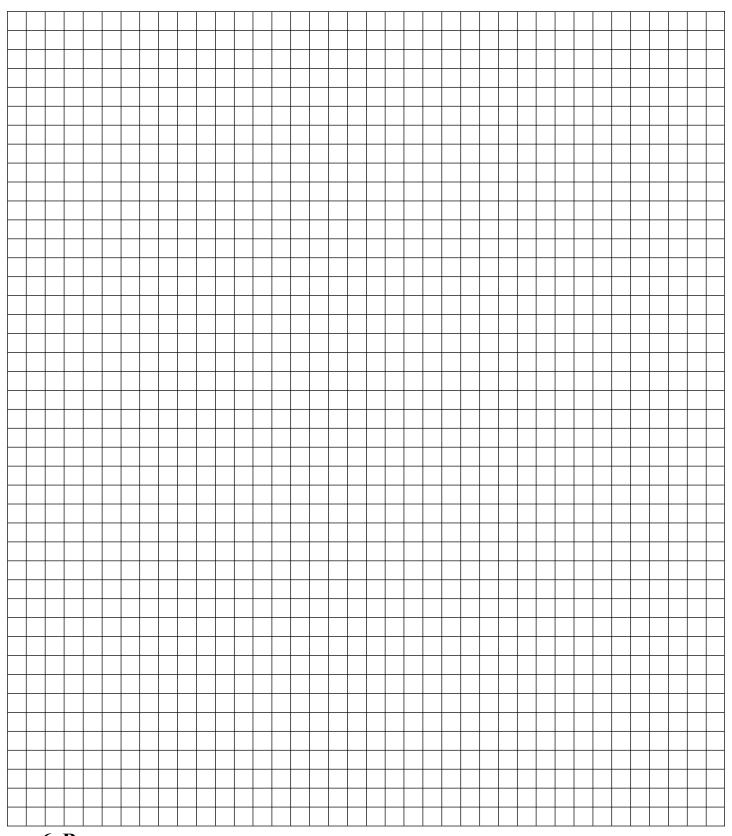
Таблица 2

Результаты расчёта погрешностей измерений разности уровней жидкости в манометре

	$\langle h \rangle$	$\sum \Delta h_i^2$	$\partial_{\langle h angle}$	$t_{a,n}$	$\Deltah_{_{C\!\it n}}$	Δh	ε_h
MM	Мм	MM ²	Мм	a = 0,95	ММ	MM	%
<i>h</i> 1							
h2							

Результаты расчёта погрешностей косвенных измерений коэффициента Пуассона


ε_{h1}	ε_{h2}	$arepsilon_{\gamma}$	$\langle \gamma_{_{\mathcal{P}KC}} angle$	Δγ	γ
%	%				
9					


Таблица 4

Определение измерения энтропии при изохорном нагревании воздуха

T_0	V	P_{θ}	h_2	$ ho_{\scriptscriptstyle \mathcal{H}\!\!c}$	ΔS_V
К	Л	Па	MM	KΓ\M³	Дж∖моль∙К
293,15	7,5	10 ⁵	13,3	10 ³	8,347

5. Примеры расчётов:

6. Вывод:
